Determination of Expected Profit for Newsboy for Uniform Demand

Assume that demand is from a normal distribution with mean and standard deviation given by \(\mu, \sigma \). Let the sales price be \(p \), the salvage price be \(s \), and the item cost be \(c \).

\(\Pi(Q) \) is the expected profit for the newsboy from ordering \(Q \) units.

\(\phi(x|\mu,\sigma) \) denotes the probability density function for a normal distribution with parameters \(\mu, \sigma \).

\[
\Pi(Q) = \int_{-\infty}^{Q} (px + s(Q-x))\phi(x|\mu,\sigma)dx + \int_{Q}^{\infty} (pQ)\phi(x|\mu,\sigma)dx - cQ
\]

Explanation:
- The first integral is over the demand realizations that are less than the order quantity \(Q \); if demand equals \(x \) and if \(x < Q \), then the newsboy will sell \(x \) units at price \(p \) and salvage \((Q-x) \) units at \(s \).
- The second integral is over the demand realizations that are more than the order quantity \(Q \); in these cases, the newsboy can only sell \(Q \) units at price \(p \).
- The last term is what the newsboy pays for ordering \(Q \) units.

To evaluate this expression, we re-write as follows:

\[
\Pi(Q) = \int_{-\infty}^{Q} (px + s(Q-x))\phi(x|\mu,\sigma)dx + \int_{Q}^{\infty} (pQ)\phi(x|\mu,\sigma)dx - cQ
\]

\[
= \int_{-\infty}^{Q} (px + s(Q-x))\phi(x|\mu,\sigma)dx + \int_{Q}^{\infty} (px + s(Q-x))\phi(x|\mu,\sigma)dx - \int_{Q}^{\infty} (px + s(Q-x))\phi(x|\mu,\sigma)dx
\]

\[
+ \int_{Q}^{\infty} (pQ)\phi(x|\mu,\sigma)dx - cQ
\]

\[
= \int_{-\infty}^{\infty} (px + s(Q-x))\phi(x|\mu,\sigma)dx - \int_{Q}^{\infty} (p-s)(x-Q)\phi(x|\mu,\sigma)dx - cQ
\]

We can then simplify this as follows:

\[
\Pi(Q) = p\mu + s(Q - \mu) - (p-s)\int_{Q}^{\infty} (x-Q)\phi(x|\mu,\sigma)dx - cQ
\]
Now the crux of the evaluation is to evaluate the third integral; for normal distribution the following can be shown, directly from algebraic transformations:

\[
\int_{x=Q}^{x=\infty} (x - Q) \phi(x \mid \mu, \sigma) \, dx = \sigma \int_{x=z}^{x=\infty} (x - z) \phi(x \mid 0,1) \, dx
\]

where \(z = \frac{Q - \mu}{\sigma} \)

Note that \(\phi(x \mid 0,1) \) is the probability density function for the standard normal distributed random variable with mean of 0 and standard deviation of 1.

The above expression is known as the partial loss function and can be calculated as follows:

\[
\text{PartialLossFunction}(z) = \int_{x=Q}^{x=\infty} (x - z) \phi(x \mid 0,1) \, dx = \phi(z \mid 0,1) - z \times (1 - \Phi(z))
\]

\[
= \text{NORMDIST}(z,0,1,\text{FALSE}) - z \times (1 - \text{NORMDIST}(z,0,1,\text{TRUE}))
\]

Where \(\Phi(z) \) is the cumulative distribution function for the standard normal. The spreadsheet commands are shown for calculation.

Thus the newsboy profit calculation is

\[
\Pi(Q) = p\mu + s(Q - \mu) - (p - s) \text{PartialLossFunction}\left(z = \frac{Q - \mu}{\sigma}\right) - cQ
\]