Problem 1 Let r be a positive real number. Consider the 2nd order, linear differential equation,

$$y'' - \left(r + \frac{3}{t} \right) y' + \left(\frac{2r}{t} + \frac{3}{t^2} \right) y = 0,$$

where $y(t)$ is a function on $(0, \infty)$. One solution of this equation is $y_1(t) = te^{rt}$. Use Wronskian reduction of order to find a second solution $y_2(t)$.

Solution For the Wronskian $W[y_1, y_2](t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$, differentiating gives,

$$W' = -a(t)W = \left(r + \frac{3}{t} \right) W.$$

This is a separable equation whose solution is,

$$\ln(W) = rt + 3\ln(t) + C,$$

in other words,

$$W(t) = At^3e^{rt}.$$

Without loss of generality, take $A = 1$.

By definition $v = y_2(t)$ is a solution of the following 1st order ODE,

$$te^{rt}v' - (rt + 1)e^{rt}v = t^3e^{rt}.$$

Putting this in normal form,

$$v' + (-r - \frac{1}{t})v = t^2.$$

An integrating factor for this equation is,

$$u(t) = \exp \left[\int_{t_0}^{t} (-r - \frac{1}{s}) ds \right]$$

$$= \exp \left[-rt - \ln(t) + B \right]$$

$$= Ct^{-1}e^{-rt},$$

where C is a constant. Set $C = 1$.

The integrating factor reduces the ODE to,

$$\left[t^{-1}e^{-rt}v \right]' = te^{-rt}.$$

Integrating by parts, the antiderivative of te^{-rt} is,

$$\int te^{-rt}dt = -\frac{1}{r^2} (rt + 1)e^{-rt} + E.$$

Hence,

$$t^{-1}e^{-rt}v = -\frac{1}{r^2} (rt + 1)e^{-rt} + E.$$

One solution is,

$$v(t) = -\frac{1}{r^2}t(rt + 1).$$
Of course any multiple of this solution also leads to a basic solution set. Therefore a basic solution set of the ODE,

\[y'' - \left(r + \frac{3}{t} \right) y' + \left(\frac{2r}{t} + \frac{3}{t^2} \right) y = 0, \]

is the pair,

\[y_1(t) = t e^r, \quad y_2(t) = t(\tau t + 1). \]

Problem 2 An undamped harmonic oscillator satisfies the ODE,

\[y'' + \omega^2 y = 0. \]

Let \(y(t) \) be a solution of this ODE for \(t < \tau \). At some time \(\tau > 0 \), the oscillator is given an *impulse* of size \(v > 0 \). In other words, if

\[\begin{aligned} \lim_{\tau \to -\tau^-} y(t) &= y_0, \\ \lim_{\tau \to -\tau^+} y'(t) &= v_0 \end{aligned} \]

then for \(t > \tau \), \(y(t) \) is a solution of the IVP,

\[\begin{aligned} y'' + \omega^2 y &= 0, \\ y(\tau) &= y_0, \\ y'(\tau) &= v_0 + v \end{aligned} \]

(a) Write \(y(t) \) in normal form \(A \cos(\omega t - \phi) \) for \(t < \tau \), and in normal form \(y(t) = B \cos(\omega t - \psi) \) for \(t > \tau \). Find an equation expressing \(B^2 \) in terms of \(A^2 \), \(v_0 \) and \(v \).

Solution For a function \(z(t) \) in the form \(C \cos(\omega t - \theta) \), the derivative is \(z'(t) = -\omega C \sin(\omega t - \theta) \).

In particular,

\[
(\omega z)^2 + (z')^2 = \omega^2 C^2 \cos^2(\omega t - \theta) + \omega^2 C^2 \sin^2(\omega t - \theta) = \omega^2 C^2.
\]

In particular,

\[
\omega^2 B^2 = (\omega y(\tau))^2 + (y'(\tau))^2 \\
= (\omega y_0)^2 + (v_0 + v)^2 = (\omega y_0)^2 + v_0^2 + 2v_0 v + v^2 \\
= \omega^2 A^2 + 2v_0 v + v^2.
\]

This gives the formula,

\[B^2 = A^2 + 2 \frac{1}{\omega^2} v_0 v + \frac{1}{\omega^2} v^2. \]

(b) If the goal of the impulse is to maximize the amplitude \(B \), at what moment \(\tau \) in the cycle of the oscillator should the impulse be applied? If the goal is minimize the amplitude \(B \), at what moment \(\tau \) should the impulse be applied?

Solution Maximizing \(B \) is the same as maximizing \(B^2 \). In the equation above, \(A^2 \), \(\omega \) and \(v \) are the same for all values of \(\tau \). The only quantity that varies is \(v_0 \). To maximize \(B^2 \), the impulse should be applied when \(v_0 \) is as large as possible, at the moment when \(y_0 = 0 \) and \(y'(t) > 0 \). In other words, when

\[
\omega \tau - \phi = (2n - 1/2)\pi, \quad \tau = \frac{1}{\omega} (\phi + (2n - 1/2)\pi).
\]

Similarly, to minimize \(B \), the impulse should be applied when \(v_0 \) is as negative as possible, at the moment when \(y_0 = 0 \) and \(y'(t) < 0 \). In other words, when

\[
\omega \tau - \phi = (2n + 1/2)\pi, \quad \tau = \frac{1}{\omega} (\phi + (2n + 1/2)\pi).
\]

Problem 3 Consider the following constant coefficient linear ODE,

\[y''' + y = 0. \]

(a) Find the characteristic polynomial and find all real and complex roots.
Solution The characteristic polynomial is,\[p(z) = z^3 + 1. \]

One evident root is \(z = -1 \). Factoring this out gives,
\[z^3 + 1 = (z + 1)(z^2 - z + 1). \]

By the quadratic formula, the two roots of \(z^2 - z + 1 \) are the complex conjugates,
\[\lambda_{\pm} = 1/2 \pm i\sqrt{3}/2. \]

(b) Find the general real-valued solution of the ODE.

Solution Associated to the root \(-1\) is the real-valued solution \(e^{-t} \). Associated to the complex conjugates \(\lambda_{\pm} \) are the two real solutions,
\[e^{t/2} \cos(\sqrt{3}t/2), \quad e^{t/2} \sin(\sqrt{3}t/2). \]

Therefore the general real-valued solution is,
\[y_g(t) = C_1 e^{-t} + C_2 e^{t/2} \cos(\sqrt{3}t/2) + C_3 e^{t/2} \sin(\sqrt{3}t/2). \]

(c) Find a particular solution of the driven ODE,
\[y'' + y = \cos(\sqrt{3}t/2). \]

Solution A particular solution is the real part of the complex-valued solution of the driven complex ODE,
\[\tilde{y}'' + \tilde{y} = e^{i\sqrt{3}t/2}. \]

Because \(i\sqrt{3}/2 \) is not a root of the characteristic polynomial, we guess the solution is of the form,
\[\tilde{y} = Ae^{i\sqrt{3}t/2}. \]

Substituting this into the ODE gives,
\[(i\sqrt{3}/2)^3 Ae^{i\sqrt{3}t/2} + Ae^{i\sqrt{3}t/2} = e^{i\sqrt{3}t/2}. \]

Simplifying gives,
\[A(1 - 3\sqrt{3}i/8) = 1, \]

i.e.,
\[\frac{1}{8} A(8 - 3\sqrt{3}i) = 1. \]

Multiplying both sides by the complex conjugate \(8 + 3\sqrt{3}i \) gives,
\[\frac{1}{8} A(64 - 27) = (8 + 3\sqrt{3}i), \]

i.e.
\[A = \frac{8}{37} (8 + 3\sqrt{3}i). \]

So the real part of \(\tilde{y}(t) \) is,
\[y_d(t) = \frac{8}{37} (8 \cos(\sqrt{3}t/2) - 3\sqrt{3} \sin(\sqrt{3}t/2)). \]

Problem 4 The linear ODE,
\[y'' + (t - 3/t)y' - 2y = 0, \]

has a basic solution pair \(y_1(t) = e^{-t^2/2}, y_2(t) = t^2 - 2. \)

(a) Find the Wronskian \(W[y_1, y_2](t) \).
Solution Computing the derivatives,
\begin{align*}
y_1(t) &= e^{-t^2/2}, \quad y_2(t) = t^2 - 2, \\
y_1'(t) &= -te^{-t^2/2}, \quad y_2'(t) = 2t.
\end{align*}
So the Wronskian is,
\[2te^{-t^2/2} - (-t)(t^2 - 2)e^{-t^2/2} = t^3e^{-t^2/2}.
\]

(b) Use variation of parameters to find a particular solution of the driven ODE,
\[y'' + (t - 3/t)y' - 2y = t^4.
\]
Solution By variation of parameters, a particular solution of \(Ly = f(t)\) is,
\[y_d(t) = \int_{t_0}^{t} K(t, s)f(s)ds,
\]
where,
\[K(t, s) = (y_1(s)y_2(t) - y_1(t)y_2(s))/W[y_1, y_2](s).
\]
By (a), \(W(s) = s^3e^{-s^2/2}\). Therefore,
\[K(t, s) = (e^{-s^2/2}(t^2 - 2) - e^{-t^2/2}(s^2 - 2))/(s^3e^{-s^2/2}).
\]
Simplifying, this is,
\[K(t, s) = \frac{1}{s^3}(t^2 - 2) - e^{-t^2/2}\left(\frac{s^2 - 2}{s^3}\right) e^{s^2/2}.
\]
Multiplying by \(s^4\) yields,
\[K(t, s)s^4 = (t^2 - 2)s - e^{-t^2/2}(s^3 - 2s)e^{s^2/2}.
\]
The antiderivative of the first term is,
\[\int_{t_0}^{t} (t^2 - 2)sd(t) = \frac{1}{2}(t^2 - t_0^2)(t^2 - 2).
\]
To antidifferentiate the second term, substitute \(u = s^2/2, du = sds\) to get,
\[\int_{t_0^2/2}^{t^2/2} -e^{-t^2/2}(u - 2)e^u du.
\]
Integrating by parts, this is,
\[\int_{t_0^2/2}^{t^2/2} -e^{-t^2/2}(u - 2)e^u du =
- e^{-t^2/2}((u - 3)u|_{t_0^2/2}^{t^2/2} =
- e^{-t^2/2}\left(\frac{1}{2}(t^2 - 6)e^{t^2/2} - \frac{1}{2}(t_0^2 - 6)e^{t_0^2/2}\right) =
- \frac{1}{2}(t^2 - 6) + \frac{1}{2}(t_0^2 - 6)e^{t_0^2/2}e^{-t^2/2}.
\]
Putting the pieces together and plugging in \(t_0 = 0\) gives,
\[y_d(t) = \frac{1}{2}(t^4 - 3t^2 + 6) - 3e^{-t^2/2}.
\]
It is straightforward to check this is a solution.

Problem 5 Recall that \(PC_\mathbb{R}(0, 1]\) is the set of all piecewise continuous real-valued functions on the interval \((0, 1]\). The inner product on this set is,
\[\langle f, g \rangle = \int_0^1 f(t)g(t)dt.
\]
Define $f_0(t) = 1$. For each integer $n \geq 1$, define $f_n(t)$ to be the piecewise continuous function whose value on $[0, \frac{1}{2^n}]$ is -1, whose value on $[\frac{1}{2^n}, \frac{2}{2^n}]$ is $+1$, whose value on $[\frac{2}{2^n}, \frac{3}{2^n}]$ is -1, whose value on $[\frac{3}{2^n}, \frac{1}{2}]$ is $+1$, etc. In other words,

$$f_n(t) = \begin{cases}
-1, & 2k-2 < t < 2k-2 \frac{2^n}{2^n} \text{ for } k = 1, \ldots, 2n-1, \\
1, & 2k-1 < t < 2k \frac{2^n}{2^n} \text{ for } k = 1, \ldots, 2n-1.
\end{cases}$$

(a) Compute the integrals (f_m, f_n) and use this to prove that (f_0, f_1, \ldots) is an orthonormal sequence. (Hint: If $n > m$, consider the integral of f_n over one of the subintervals $(\frac{a}{2^n}, \frac{a+1}{2^n}]$. What fraction of the time is f_n positive and what fraction of the time is it negative?)

Solution First of all, for every n, $(f_n(t))^2$ is the constant function 1. Therefore $(f_n, f_n) = 1$. Suppose that $n > m$. Then the integral (f_n, f_m) is the sum over all integers $a = 0, \ldots, 2^m - 1$ of the integral,

$$\int_{a/2^m}^{(a+1)/2^n} \pm f_n(t) \, dt.$$

Of course the interval $(\frac{a}{2^n}, \frac{a+1}{2^n}]$ is a union of 2^{m-n} intervals $(\frac{b}{2^n}, \frac{b+1}{2^n}]$. On half of these intervals, $f_n(t)$ has the constant value -1. On the other half, $f_n(t)$ has the constant value $+1$. Therefore the net integral of $f_n(t)$ over $(\frac{a}{2^n}, \frac{a+1}{2^n}]$ is 0. Since this holds for each a,

$$(f_n, f_m) = 0.$$

Therefore the sequence (f_0, f_1, \ldots) is an orthonormal sequence.

(b) Compute the generalized Fourier coefficient,

$$\langle t, f_n(t) \rangle = \int_0^1 t f_n(t) \, dt.$$

Prove it equals $\frac{1}{2^{n+1}}$. This gives the generalized Fourier series,

$$t = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f_n(t).$$

Solution Of course for $n = 0$, $\langle t, f_0(t) \rangle$ is just the integral of t, which is $\frac{1}{2}$. Suppose that $n > 0$. By definition,

$$\langle t, f_n(t) \rangle = \sum_{k=1}^{2^{n-1}} \left(\int_{(2k-2)/2^n}^{(2k-1)/2^n} t(-1) \, dt + \int_{(2k-1)/2^n}^{2k/2^n} t(1) \, dt \right).$$

Integrating, this is,

$$\sum_{k=1}^{2^{n-1}} \left(-\left(\frac{t^2}{2}\right)_{(2k-2)/2^n}^{(2k-1)/2^n} + \left(\frac{t^2}{2}\right)_{(2k-1)/2^n}^{2k/2^n} \right).$$

The term in parentheses simplifies to,

$$-\frac{1}{2} \left((2k-1)^2/2^{2n} - (2k-2)^2/2^{2n}\right) + \frac{1}{2} \left((2k)^2/2^{2n} - (2k-1)^2/2^{2n}\right) = \frac{1}{2^{2n+1}} \left(4k^2 - 2(2k-1)^2 + (2k-2)^2\right) = \frac{1}{2^{2n+1}} \left(4k^2 - 8k^2 + 8k - 2 + 4k^2 - 8k + 4\right) = \frac{1}{2^{2n+1}}.$$

Summing over all k gives $2^{n-1} \times (1/2^{2n}) = 1/2^{n+1}$. Therefore the generalized Fourier coefficient is,

$$\langle t, f_n(t) \rangle = \frac{1}{2^{n+1}}.$$
This gives the generalized Fourier series,

\[t = \sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f_n(t). \]

(c) Rewrite the series above as,

\[t = \sum_{n=1}^{\infty} \frac{1 + f_n(t)}{2^n}. \]

What is the relationship of this equation to the binary expansion of the real number \(t \)?

Solution We can rewrite the equation because,

\[\frac{1}{2} f_0 = \frac{1}{2} = \sum_{n=1}^{\infty} \frac{1}{2^{n+1}}. \]

Now \(1 + f_n(t) \) equals 0 iff the \(n \)th digit in the binary expansion of \(t \) equals 0. And \(1 + f_n(t) \) equals 2 iff the \(n \)th digit in the binary expansion of \(t \) equals 1. Therefore \((1 + f_n(t))/2\) is precisely the \(n \)th digit in the binary expansion of \(t \). Therefore the formula above precisely says that \(t \) is equal to the series arising from the binary expansion of \(t \).