Limits in Iterated Integrals

3. Triple integrals in rectangular and cylindrical coordinates.

You do these the same way, basically. To supply limits for \(\iiint_D dz \, dy \, dx \) over
the region \(D \), we integrate first with respect to \(z \). Therefore we

1. Hold \(x \) and \(y \) fixed, and let \(z \) increase. This gives us a vertical line.

2. Integrate from the \(z \)-value where the vertical line enters the region \(D \) to the
\(z \)-value where it leaves \(D \).

3. Supply the remaining limits (in either \(xy \)-coordinates or polar coordinates)
so that you include all vertical lines which intersect \(D \). This means that you will
be integrating the remaining double integral over the region \(R \) in the \(xy \)-plane
which \(D \) projects onto.

For example, if \(D \) is the region lying between the two paraboloids

\[
\begin{align*}
 z &= x^2 + y^2 \\
 z &= 4 - x^2 - y^2,
\end{align*}
\]

we get by following steps 1 and 2,

\[
\iiint_D dz \, dy \, dx = \iint_R \int_{x^2+y^2}^{4-x^2-y^2} dz \, dA
\]

where \(R \) is the projection of \(D \) onto the \(xy \)-plane. To finish the job, we have to determine
what this projection is. From the picture, what we should determine is the \(xy \)-curve over
which the two surfaces intersect. We find this curve by eliminating \(z \) from the two equations,
getting

\[
\begin{align*}
 x^2 + y^2 &= 4 - x^2 - y^2, \\
 x^2 + y^2 &= 2.
\end{align*}
\]

Thus the \(xy \)-curve bounding \(R \) is the circle in the \(xy \)-plane with center at the origin and
radius \(\sqrt{2} \).

This makes it natural to finish the integral in polar coordinates. We get

\[
\iiint_D dz \, dy \, dx = \int_0^{2\pi} \int_0^{\sqrt{2}} \int_{x^2+y^2}^{4-x^2-y^2} dz \, r \, dr \, d\theta ;
\]

the limits on \(z \) will be replaced by \(r^2 \) and \(4 - r^2 \) when the integration is carried out.