Solutions to linear systems

1. Consider the system of equations
 \[
 \begin{align*}
 x + 2y + 3z &= 1 \\
 4x + 5y + 6z &= 2 \\
 7x + 8y + cz &= 3.
 \end{align*}
 \]

 a) Write the system in matrix form.

 b) For which values of \(c \) is there exactly one solution?

 c) For which values of \(c \) are there either 0 or infinitely many solutions?

 d) Take the corresponding homogeneous system
 \[
 \begin{align*}
 x + 2y + 3z &= 0 \\
 4x + 5y + 6z &= 0 \\
 7x + 8y + cz &= 0.
 \end{align*}
 \]

 For the value(s) of \(c \) found in part (c) give all the solutions.

 \textbf{Answer:} a) \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \).

 b) There is exactly one solution when the coefficient matrix has an inverse (i.e., is invertible). This happens when the determinant is not zero.

 \[
 \begin{vmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & c
 \end{vmatrix} = 1(5c - 48) - 2(4c - 42) + 3(32 - 35) = -3c + 27 = 0 \iff c = 9.
 \]

 There is exactly one solution as long as \(c \neq 9 \).

 c) This is just the complement of part (b): there are zero or infinitely many solutions when \(c = 9 \).

 d) Setting \(c = 9 \) our coefficient matrix is \(A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \). Thinking of matrix multiplication as a series of dot products between rows of the left matrix and column(s) of the right one we see that in solving

 \[
 \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
 \]

 we are looking for vectors \(\langle x, y, z \rangle \) that are orthogonal to each of the rows of \(A \). Since \(\det(A) = 0 \), the rows are all in a plane and we can find orthogonal vectors by taking a cross product of (say) the first two rows.

 \[
 \langle 1, 2, 3 \rangle \times \langle 4, 5, 6 \rangle = \begin{vmatrix} i & j & k \\ 1 & 2 & 3 \\ 4 & 5 & 6 \end{vmatrix} = \langle -3, 6, -3 \rangle.
 \]
Since scaling will preserve orthogonality, all the solutions are scalar multiples, i.e., all the solutions are of the form \((x, y, z) = (-3a, 6a, -3a)\). We can make this a little nicer by removing the common factor of three,

\[(x, y, z) = (-a, 2a, -a) = a(-1, 2, -1).\]