Geometry of systems of equations

1. Write a 3-by-3 system of equations
 a) with no solutions and where all the planes are parallel;
 b) where two planes are parallel and the other intersects them;
 c) where the planes are all different and all intersect in a line.

 Answer: a) Planes are parallel if there normals are parallel. Here are two examples of such a system. We show a sketch of the second one.

 \[
 \begin{align*}
 x + 2y + 3z &= 5 & \quad z &= 0 \\
 x + 2y + 3z &= 7 & \quad z &= 2 \\
 x + 2y + 3z &= 9 & \quad z &= 4
 \end{align*}
 \]

 b) If planes are not parallel then they intersect, so it is easy to find many examples of this. Here are two, with a sketch of the second one.

 \[
 \begin{align*}
 x + 2y + 3z &= 5 & \quad z &= 1 \\
 x + 2y + 3z &= 7 & \quad z &= 3 \\
 x + y + z &= 0 & \quad x &= 0
 \end{align*}
 \]

 c) This is a little trickier. We’ll use a lot of zeros to help. The following system intersects in the z-axis

 \[
 \begin{align*}
 x &= 0 \\
 y &= 0 \\
 x + y &= 0
 \end{align*}
 \]