Uses of dot product

1. Find the angle between \(\mathbf{i} + \mathbf{j} + 2 \mathbf{k} \) and \(2 \mathbf{i} - \mathbf{j} + \mathbf{k} \).

 Answer: We call the angle \(\theta \) and use both ways of computing the dot product. Algebraically we have
 \[(\mathbf{i} + \mathbf{j} + 2 \mathbf{k}) \cdot (2 \mathbf{i} - \mathbf{j} + \mathbf{k}) = 2 - 1 + 2 = 3.\]

 Geometrically
 \[(\mathbf{i} + \mathbf{j} + 2 \mathbf{k}) \cdot (2 \mathbf{i} - \mathbf{j} + \mathbf{k}) = |\mathbf{i} + \mathbf{j} + 2 \mathbf{k}| \cdot |2 \mathbf{i} - \mathbf{j} + \mathbf{k}| \cos \theta = \sqrt{6} \sqrt{6} \cos \theta = 6.\]

 Combining these two we have
 \[6 \cos \theta = 3 \Rightarrow \cos \theta = \frac{3}{6} = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}.\]

2. a) Are \(\langle 1, 3 \rangle \) and \(\langle -2, 2 \rangle \) orthogonal?

 b) For what value of \(a \) are the vectors \(\langle 1, a \rangle \) and \(\langle 2, 3 \rangle \) at right angles?

 c) In the figure the vectors \(\mathbf{A} \) and \(\mathbf{B}_1 \) are orthogonal as are \(\mathbf{A} \) and \(\mathbf{B}_2 \). If all the vectors are the same length what are the coordinates of \(\mathbf{B}_1 \) and \(\mathbf{B}_2 \)?

 Answer: a) Vectors are orthogonal if their dot product is 0. So, taking the dot product
 \[\langle 1, 3 \rangle \cdot \langle -2, 2 \rangle = -2 + 6 = 4 \neq 0.\]

 Thus the vectors are not orthogonal.

 b) Setting the dot product to 0 and solving for \(a \) we get
 \[\langle 1, a \rangle \cdot \langle 2, 3 \rangle = 2 + 3a = 0 \Rightarrow a = -2/3.\]

 c) \(\mathbf{B}_1 \) is \(\mathbf{A} \) rotated \(90^\circ \) clockwise. We will show that \(\mathbf{B}_1 = \langle a_2, -a_1 \rangle \). It is easy to check that
 \[|\langle a_2, -a_1 \rangle| = |\mathbf{A}| \text{ and } \langle a_2, -a_1 \rangle \cdot \mathbf{A} = 0.\]

 The figure above shows that putting the negative sign on the \(a_1 \) means \(\langle a_2, -a_1 \rangle \) is turned clockwise from \(\mathbf{A} \). Thus, \(\langle a_2, -a_1 \rangle = \mathbf{B}_1 \).

 \(\mathbf{B}_2 \) is \(\mathbf{A} \) rotated \(90^\circ \) counterclockwise. Similarly to \(\mathbf{B}_1 \), we find \(\mathbf{B}_2 = \langle -a_2, a_1 \rangle \).
3. Using vectors and dot product show the diagonals of a parallelogram have equal lengths if and only if it’s a rectangle

Answer:

\[\begin{align*}
D & \quad C \\
A & \quad B
\end{align*} \]

We will make use of two properties of the dot product

1. \(\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2 \).
2. \(\mathbf{v} \cdot \mathbf{w} = 0 \iff \mathbf{v} \perp \mathbf{w} \).

Referring to the figure, we will also need to use the fact that \(ABCD \) is a parallelogram. That is, \(\overrightarrow{AB} = \overrightarrow{DC} \).

We have \(\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} \) and \(\overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{BC} - \overrightarrow{AB} \).

Taking dot products:

\[|\overrightarrow{AC}|^2 = \overrightarrow{AC} \cdot \overrightarrow{AC} = (\overrightarrow{AB} + \overrightarrow{BC}) \cdot (\overrightarrow{AB} + \overrightarrow{BC}) = |\overrightarrow{AB}|^2 + 2\overrightarrow{AB} \cdot \overrightarrow{BC} + |\overrightarrow{BC}|^2. \]

and

\[|\overrightarrow{BD}|^2 = \overrightarrow{BD} \cdot \overrightarrow{BD} + (\overrightarrow{BC} - \overrightarrow{AB}) \cdot (\overrightarrow{BC} - \overrightarrow{AB}) = |\overrightarrow{BC}|^2 - 2\overrightarrow{BC} \cdot \overrightarrow{AB} + |\overrightarrow{AB}|^2 \]

Comparing the two equations above we see

\[|\overrightarrow{AC}|^2 = |\overrightarrow{BD}|^2 \iff 4\overrightarrow{AB} \cdot \overrightarrow{BC} = 0. \]

This shows the diagonals have the same length if and only if \(\overrightarrow{AB} \perp \overrightarrow{BC} \). That is, if and only if the sides of the parallelogram are orthogonal to each other. QED